CPU Benchmark Performance: Simulation

Simulation and Science have a lot of overlap in the benchmarking world. The benchmarks that fall under Science have a distinct use for the data they output – in our Simulation section, these act more like synthetics but at some level are still trying to simulate a given environment.

In the encrypt/decrypt scenario, how data is transferred and by what mechanism is pertinent to on-the-fly encryption of sensitive data - a process by which more modern devices are leaning to for software security.

We are using DDR5 memory on the Core i9-13900K, the Core i5-13600K, the Ryzen 9 7950X, and Ryzen 5 7600X, as well as Intel's 12th Gen (Alder Lake) processors at the following settings:

  • DDR5-5600B CL46 - Intel 13th Gen
  • DDR5-5200 CL44 - Ryzen 7000
  • DDR5-4800 (B) CL40 - Intel 12th Gen

All other CPUs such as Ryzen 5000 and 3000 were tested at the relevant JEDEC settings as per the processor's individual memory support with DDR4.

 

Simulation

(3-1) Dwarf Fortress 0.44.12 World Gen 65x65, 250 Yr

(3-1b) Dwarf Fortress 0.44.12 World Gen 129x129, 550 Yr

(3-1c) Dwarf Fortress 0.44.12 World Gen 257x257, 550 Yr

(3-2) Dolphin 5.0 Render Test

(3-3) Factorio v1.1.26 Test, 10K Trains

(3-3b) Factorio v1.1.26 Test, 10K Belts

(3-3c) Factorio v1.1.26 Test, 20K Hybrid

(3-4) John The Ripper 1.9.0: Blowfish

(3-4b) John The Ripper 1.9.0: MD5

Outside of the AMD Ryzen 7 5800X3D's dominance in our Factorio testing, the rest of the results paint an interesting picture; the Core i9-13900K excels in simulations. Whether that's the addition of eight more efficiency cores over the Core i9-12900K, or that it's also partly due to increased core clock speeds, if it works, it works. The AMD Ryzen 9 7950X is also a solid contender, however, and it tears the competition a new one in our new John the Ripper MD5 test.

CPU Benchmark Performance: Science CPU Benchmark Performance: Rendering And Encoding
Comments Locked

169 Comments

View All Comments

  • Nero3000 - Thursday, October 20, 2022 - link

    Correction: the 12600k is 6P+4E - table on first page
  • Hixbot - Thursday, October 20, 2022 - link

    I am hoping for an high frequency 8 core i5 with zero ecores and high cache. It's would be a gamer sweet spot, and could counter the inevitable 3d cache Zen 4.
  • nandnandnand - Friday, October 21, 2022 - link

    big.LITTLE isn't going away. It's in a billion smartphones, and it will be in most of Intel's consumer CPUs going forward.

    Just grab your 7800X3D, before AMD does its own big/small implementation with Zen 5.
  • HarryVoyager - Friday, October 21, 2022 - link

    Honestly, I'm underwhelmed by Intel's current big.LITTLE setup. As near as I can tell, under load the E cores are considerably less efficient than the P cores are, and currently just seem to be there so Intel can claim multi-threading victories with less die space.

    And with the CPU's heat limits, it just seems to be pushing the chip into thermal throttling even faster.

    Hopefully future big.LITTLE implementations are better.
  • nandnandnand - Friday, October 21, 2022 - link

    Meteor Lake will bring Redwood Cove to replace Golden/Raptor Cove, and Crestmont to replace Gracemont. Gracemont in Raptor Lake is the same as in Alder Lake except for more cache, IIRC. All of this will be on "Intel 4" instead of "Intel 7", and the core count might be 8+16 again.

    Put it all together and it should have a lot of breathing room compared to the 13900K(S).

    8+32 will be the ultimate test of small cores, but they're already migrating on down to the cheaper chips like the 13400/13500.
  • Hixbot - Saturday, October 22, 2022 - link

    Yes it does seem backwards that the more efficient architecture is in the P core. Reducing power consumption for light tasks seems better to keep it on the P core and downclock. I don't see the point of the "e" cores as effiency, but rather academic multithreaded benchmark war. Which isn't serving the consumer at all.
  • deil - Monday, October 24, 2022 - link

    E is still useful, as you get 8/8 cores in space where you could cram 2/4. I agree E for efficiency should be B as background to make it clearer what's the point. They are good for consumers as they offer all the high speed cores for main process, so OS and other things dont slow down.
    I am not sure if you followed, but intel cpu's literally doubled in power since they appeared, and at ~25% utilization, cpu's halved power usage. What you should complain about is bad software support, as this is not something that happens in the background.
  • TEAMSWITCHER - Monday, October 24, 2022 - link

    I don't think you are fully grasping the results of the benchmarks. Compute/Rendering scores prove that e-cores can tackle heavy work loads. Often trading blows with AMD's all P-Core 7950X, and costing less at the same time. AMD needs to lower all prices immediately.
  • haoyangw - Monday, October 24, 2022 - link

    That's an oversimplification actually, P-cores and E-cores are both efficient, just for different tasks. The main efficiency gain of P-cores is it's much much faster than E-cores for larger tasks. Between 3 and 4GHz, P-cores are so fast they finish tasks much earlier than e-cores so total energy drawn is lower. But E-cores are efficient too, just for simple tasks(at low clockspeeds). Below 3GHz and above 1GHz, e-cores are much more efficient, beating P-cores in performance while drawing less power.

    Source: https://chipsandcheese.com/2022/01/28/alder-lakes-...
  • Great_Scott - Friday, November 25, 2022 - link

    Big.LITTLE is hard to do, and ARM took ages and a lot of optimization before phone CPUs got much benefit from it.

    The problem of the LITTLE cores not adding anything in the way of power efficiency is well-known.

    I'm saddened that Intel is dropping their own winning formula of "race-to-sleep" that they've successfully used for decades for aping something objectivly worse because they're a little behind in die shrinking.

Log in

Don't have an account? Sign up now